Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 623
1.
Elife ; 92020 09 11.
Article En | MEDLINE | ID: mdl-32915134

We have previously reported that central neurons mediating vestibulo-spinal reflexes and self-motion perception optimally encode natural self-motion (Mitchell et al., 2018). Importantly however, the vestibular nuclei also comprise other neuronal classes that mediate essential functions such as the vestibulo-ocular reflex (VOR) and its adaptation. Here we show that heterogeneities in resting discharge variability mediate a trade-off between faithful encoding and optimal coding via temporal whitening. Specifically, neurons displaying lower variability did not whiten naturalistic self-motion but instead faithfully represented the stimulus' detailed time course, while neurons displaying higher variability displayed temporal whitening. Using a well-established model of VOR pathways, we demonstrate that faithful stimulus encoding is necessary to generate the compensatory eye movements found experimentally during naturalistic self-motion. Our findings suggest a novel functional role for variability toward establishing different coding strategies: (1) faithful stimulus encoding for generating the VOR; (2) optimized coding via temporal whitening for other vestibular functions.


Eye Movements/physiology , Head Movements/physiology , Neurons/physiology , Reflex, Vestibulo-Ocular/physiology , Vestibular Nuclei/physiology , Animals , Macaca mulatta , Vestibular Nuclei/cytology
2.
Mol Brain ; 13(1): 67, 2020 05 05.
Article En | MEDLINE | ID: mdl-32370769

The linear nucleus (Li) was identified in 1978 from its projections to the cerebellum. However, there is no systematic study of its connections with other areas of the central nervous system possibly due to the challenge of injecting retrograde tracers into this nucleus. The present study examines its afferents from some nuclei involved in motor and cardiovascular control with anterograde tracer injections. BDA injections into the central amygdaloid nucleus result in labeled fibers to the ipsilateral Li. Bilateral projections with an ipsilateral dominance were observed after injections in a) jointly the paralemniscal nucleus, the noradrenergic group 7/ Köllike -Fuse nucleus/subcoeruleus nucleus, b) the gigantocellular reticular nucleus, c) and the solitary nucleus/the parvicellular/intermediate reticular nucleus. Retrogradely labeled neurons were observed in Li after BDA injections into all these nuclei except the central amygdaloid and the paralemniscal nuclei. Our results suggest that Li is involved in a variety of physiological functions apart from motor and balance control it may exert via its cerebellar projections.


Biotin/analogs & derivatives , Dextrans/pharmacology , Dorsal Raphe Nucleus/drug effects , Neurons/drug effects , Afferent Pathways , Amygdala/cytology , Amygdala/drug effects , Amygdala/metabolism , Animals , Biotin/pharmacology , Cerebellum/drug effects , Cerebellum/metabolism , Dorsal Raphe Nucleus/cytology , Dorsal Raphe Nucleus/metabolism , Medulla Oblongata/metabolism , Mice , Mice, Inbred C57BL , Neural Pathways/drug effects , Neural Pathways/metabolism , Neurons/cytology , Neurons/metabolism , Pontine Tegmentum/cytology , Pontine Tegmentum/drug effects , Pontine Tegmentum/metabolism , Trigeminal Nuclei/cytology , Trigeminal Nuclei/drug effects , Trigeminal Nuclei/metabolism , Vestibular Nuclei/cytology , Vestibular Nuclei/drug effects , Vestibular Nuclei/metabolism
3.
Front Neural Circuits ; 14: 11, 2020.
Article En | MEDLINE | ID: mdl-32296310

Objective: To investigate whether the CSF-contacting nucleus receives brainstem and spinal cord projections and to understand the functional significance of these connections. Methods: The retrograde tracer cholera toxin B subunit (CB) was injected into the CSF-contacting nucleus in Sprague-Dawley rats according the previously reported stereotaxic coordinates. After 7-10 days, these rats were perfused and their brainstem and spinal cord were sliced (thickness, 40 µm) using a freezing microtome. All the sections were subjected to CB immunofluorescence staining. The distribution of CB-positive neuron in different brainstem and spinal cord areas was observed under fluorescence microscope. Results: The retrograde labeled CB-positive neurons were found in the midbrain, pons, medulla oblongata, and spinal cord. Four functional areas including one hundred and twelve sub-regions have projections to the CSF-contacting nucleus. However, the density of CB-positive neuron distribution ranged from sparse to dense. Conclusion: Based on the connectivity patterns of the CSF-contacting nucleus receives anatomical inputs from the brainstem and spinal cord, we preliminarily conclude and summarize that the CSF-contacting nucleus participates in pain, visceral activity, sleep and arousal, emotion, and drug addiction. The present study firstly illustrates the broad projections of the CSF-contacting nucleus from the brainstem and spinal cord, which implies the complicated functions of the nucleus especially for the unique roles of coordination in neural and body fluids regulation.


Brain Stem/chemistry , Cerebrospinal Fluid/chemistry , Connectome/methods , Imaging, Three-Dimensional/methods , Spinal Cord/chemistry , Abducens Nucleus/chemistry , Abducens Nucleus/cytology , Abducens Nucleus/physiology , Animals , Brain Stem/cytology , Brain Stem/physiology , Cerebral Aqueduct/chemistry , Cerebral Aqueduct/cytology , Cerebral Aqueduct/physiology , Cerebrospinal Fluid/physiology , Neural Pathways/chemistry , Neural Pathways/cytology , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Spinal Cord/cytology , Spinal Cord/physiology , Vestibular Nuclei/chemistry , Vestibular Nuclei/cytology , Vestibular Nuclei/physiology
4.
J Comp Neurol ; 528(10): 1775-1802, 2020 07.
Article En | MEDLINE | ID: mdl-31904871

A significant population of neurons in the vestibular nuclei projects to the cerebellum as mossy fibers (MFs) which are involved in the control and adaptation of posture, eye-head movements, and autonomic function. However, little is known about their axonal projection patterns. We studied the morphology of single axons of medial vestibular nucleus (MVN) neurons as well as those originating from primary afferents, by labeling with biotinylated dextran amine (BDA). MVN axons (n = 35) were classified into three types based on their major predominant termination patterns. The Cbm-type terminated only in the cerebellum (15 axons), whereas others terminated in the cerebellum and contralateral vestibular nuclei (cVN/Cbm-type, 13 axons), or in the cerebellum and ipsilateral vestibular nuclei (iVN/Cbm-type, 7 axons). Cbm- and cVN/Cbm-types mostly projected to the nodulus and uvula without any clear relationship with longitudinal stripes in these lobules. They were often bilateral, and sometimes sent branches to the flocculus and to other vermal lobules. Also, the iVN/Cbm-type projected mainly to the ipsilateral nodulus. Neurons of these types of axons showed different distribution within the MVN. The number of MF terminals of some vestibulocerebellar axons, iVN/Cbm-type axons in particular, and primary afferent axons were much smaller than observed in previously studied MF axons originating from major precerebellar nuclei and the spinal cord. The results demonstrated that a heterogeneous population of MVN neurons provided divergent MF inputs to the cerebellum. The cVN/Cbm- and iVN/Cbm-types indicate that some excitatory neuronal circuits within the vestibular nuclei supply their collaterals to the vestibulocerebellum as MFs.


Axons/ultrastructure , Cerebellum/cytology , Nerve Fibers/ultrastructure , Neural Pathways/cytology , Vestibular Nuclei/cytology , Animals , Female , Image Processing, Computer-Assisted , Male , Mice
5.
J Neurosci ; 40(3): 496-508, 2020 01 15.
Article En | MEDLINE | ID: mdl-31719168

Computations that require speed and temporal precision are implemented throughout the nervous system by neurons capable of firing at very high rates, rapidly encoding and transmitting a rich amount of information, but with substantial metabolic and physical costs. For economical fast spiking and high throughput information processing, neurons need to optimize multiple biophysical properties in parallel, but the mechanisms of this coordination remain unknown. We hypothesized that coordinated gene expression may underlie the coordinated tuning of the biophysical properties required for rapid firing and signal transmission. Taking advantage of the diversity of fast-spiking cell types in the medial vestibular nucleus of mice of both sexes, we examined the relationship between gene expression, ionic currents, and neuronal firing capacity. Across excitatory and inhibitory cell types, genes encoding voltage-gated ion channels responsible for depolarizing and repolarizing the action potential were tightly coexpressed, and their absolute expression levels increased with maximal firing rate. Remarkably, this coordinated gene expression extended to neurofilaments and specific presynaptic molecules, providing a mechanism for coregulating axon caliber and transmitter release to match firing capacity. These findings suggest the presence of a module of genes, which is coexpressed in a graded manner and jointly tunes multiple biophysical properties for economical differentiation of firing capacity. The graded tuning of fast-spiking capacity by the absolute expression levels of specific ion channels provides a counterexample to the widely held assumption that cell-type-specific firing patterns can be achieved via a vast combination of different ion channels.SIGNIFICANCE STATEMENT Although essential roles of fast-spiking neurons in various neural circuits have been widely recognized, it remains unclear how neurons efficiently coordinate the multiple biophysical properties required to maintain high rates of action potential firing and transmitter release. Taking advantage of diverse fast-firing capacities among medial vestibular nucleus neurons of mice, we identify a group of ion channel, synaptic, and structural genes that exhibit mutually correlated expression levels, which covary with firing capacity. Coexpression of this fast-spiking gene module may be a basic strategy for neurons to efficiently and coordinately tune the speed of action potential generation and propagation and transmitter release at presynaptic terminals.


Ion Channels/biosynthesis , Neurofilament Proteins/biosynthesis , Neurons/metabolism , Synapses/genetics , Vestibular Nuclei/metabolism , Action Potentials , Animals , Axons/metabolism , Axons/physiology , Electrophysiological Phenomena/genetics , Female , Gene Expression Regulation/genetics , Genome-Wide Association Study , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Vestibular Nuclei/cytology
6.
Cell Death Dis ; 10(10): 774, 2019 10 10.
Article En | MEDLINE | ID: mdl-31601780

Neonatal jaundice is prevalent among newborns and can lead to severe neurological deficits, particularly sensorimotor dysfunction. Previous studies have shown that bilirubin (BIL) enhances the intrinsic excitability of central neurons and this can potentially contribute to their overexcitation, Ca2+ overload, and neurotoxicity. However, the cellular mechanisms underlying elevated neuronal excitability remain unknown. By performing patch-clamp recordings from neonatal neurons in the rat medial vestibular nucleus (MVN), a crucial relay station for locomotor and balance control, we found that BIL (3 µM) drastically increases the spontaneous firing rates by upregulating the current-mediated voltage-gated sodium channels (VGSCs), while shifting their voltage-dependent activation toward more hyperpolarized potentials. Immunofluorescence labeling and western immunoblotting with an anti-NaV1.1 antibody, revealed that BIL elevates the expression of VGSCs by promoting their recruitment to the membrane. Furthermore, we found that this VGSC-trafficking process is Ca2+ dependent because preloading MVN neurons with the Ca2+ buffer BAPTA-AM, or exocytosis inhibitor TAT-NSF700, prevents the effects of BIL, indicating the upregulated activity and density of functional VGSCs as the core mechanism accountable for the BIL-induced overexcitation of neonatal neurons. Most importantly, rectification of such overexcitation with a low dose of VGSC blocker lidocaine significantly attenuates BIL-induced cell death. We suggest that this enhancement of VGSC currents directly contributes to the vulnerability of neonatal brain to hyperbilirubinemia, implicating the activity and trafficking of NaV1.1 channels as a potential target for neuroprotection in cases of severe jaundice.


Action Potentials/drug effects , Bilirubin/toxicity , Calcium/metabolism , Neurons/drug effects , Voltage-Gated Sodium Channels/metabolism , Animals , Cell Death , Exocytosis/drug effects , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects , Up-Regulation/physiology , Vestibular Nuclei/cytology , Vestibular Nuclei/drug effects , Vestibular Nuclei/metabolism
7.
J Neurol ; 266(Suppl 1): 27-32, 2019 Sep.
Article En | MEDLINE | ID: mdl-31134376

Over the last few decades, several studies have been conducted to identify the mechanisms involved in spontaneous functional recovery following peripheral vestibular damage. Different reactive processes occur at both the central and peripheral levels over the first few hours after the loss of the peripheral vestibular input. The restoration of the electrophysiological homeostasis between opposite vestibular nuclei is one of the key mechanisms of central compensation. This is achieved through a mosaic of biochemical events within the vestibular nuclei that each occur with their own kinetics. At the same time, under specific conditions, strong synaptic plasticity may take place within the vestibular sensory organs. It is thought that this reactive plasticity can contribute to the repair of damaged contacts between hair cells and fibres of the vestibular nerve, thus gradually restoring peripheral sensory input. These different plastic phenomena seem to reproduce those observed during development. Research is now needed to identify the cellular and molecular mechanisms that support this spontaneous peripheral repair process, with the ambition 1 day to be able to control it and stimulate the restoration of gait and balance.


Adaptation, Physiological/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Vestibule, Labyrinth/physiology , Animals , Humans , Recovery of Function/physiology , Vestibular Nuclei/cytology , Vestibular Nuclei/physiology , Vestibule, Labyrinth/cytology
8.
eNeuro ; 6(1)2019.
Article En | MEDLINE | ID: mdl-30899776

Vestibulospinal neurons are organized into discrete groups projecting from brainstem to spinal cord, enabling vertebrates to maintain proper balance and posture. The two largest groups are the lateral vestibulospinal tract (LVST) group and the contralateral medial vestibulospinal tract (cMVST) group, with different projection lateralities and functional roles. In search of a molecular basis for these differences, we performed RNA sequencing on LVST and cMVST neurons from mouse and chicken embryos followed by immunohistofluorescence validation. Focusing on transcription factor (TF)-encoding genes, we identified TF signatures that uniquely distinguish the LVST from the cMVST group and further parse different rhombomere-derived portions comprising the cMVST group. Immunohistofluorescence assessment of the CNS from spinal cord to cortex demonstrated that these TF signatures are restricted to the respective vestibulospinal groups and some neurons in their immediate vicinity. Collectively, these results link the combinatorial expression of TFs to developmental and functional subdivisions within the vestibulospinal system.


Cerebral Cortex/cytology , Neurons/cytology , Spinal Cord/cytology , Transcription Factors/metabolism , Vestibular Nuclei/cytology , Animals , Biological Evolution , Cerebral Cortex/metabolism , Chick Embryo , Mice, Transgenic , Neural Pathways/cytology , Neural Pathways/metabolism , Neurons/metabolism , Spinal Cord/metabolism , Transcriptome , Vestibular Nuclei/metabolism
9.
J Neurosci ; 39(15): 2860-2876, 2019 04 10.
Article En | MEDLINE | ID: mdl-30696730

Vestibular ganglion neurons (VGNs) transmit information along parallel neuronal pathways whose signature distinction is variability in spike-timing; some fire at regular intervals while others fire at irregular intervals. The mechanisms driving timing differences are not fully understood but two opposing (but not mutually exclusive) hypotheses have emerged. In the first, regular-spiking is inversely correlated to the density of low-voltage-gated potassium currents (IKL). In the second, regular spiking is directly correlated to the density of hyperpolarization-activated cyclic nucleotide-sensitive currents (IH). Supporting the idea that variations in ion channel composition shape spike-timing, VGNs from the first postnatal week respond to synaptic-noise-like current injections with irregular-firing patterns if they have IKL and with more regular firing patterns if they do not. However, in vitro firing patterns are not as regular as those in vivo Here we considered whether highly-regular spiking requires IH currents and whether this dependence emerges later in development after channel expression matures. We recorded from rat VGN somata of either sex aged postnatal day (P)9-P21. Counter to expectation, in vitro firing patterns were less diverse, more transient-spiking, and more irregular at older ages than at younger ages. Resting potentials hyperpolarized and resting conductance increased, consistent with developmental upregulation of IKL Activation of IH (by increasing intracellular cAMP) increased spike rates but not spike-timing regularity. In a model, we found that activating IH counter-intuitively suppressed regularity by recruiting IKL Developmental upregulation in IKL appears to overwhelm IH These results counter previous hypotheses about how IH shapes vestibular afferent responses.SIGNIFICANCE STATEMENT Vestibular sensory information is conveyed on parallel neuronal pathways with irregularly-firing neurons encoding information using a temporal code and regularly-firing neurons using a rate code. This is a striking example of spike-timing statistics influencing information coding. Previous studies from immature vestibular ganglion neurons (VGNs) identified hyperpolarization-activated mixed cationic currents (IH) as driving highly-regular spiking and proposed that this influence grows with the current during maturation. We found that IH becomes less influential, likely because maturing VGNs also acquire low-voltage-gated potassium currents (IKL), whose inhibitory influence opposes IH Because efferent activity can partly close IKL, VGN firing patterns may become more receptive to extrinsic control. Spike-timing regularity likely relies on dynamic ion channel properties and complementary specializations in synaptic connectivity.


Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Neurons, Afferent/physiology , Vestibular Nuclei/physiology , Aging , Animals , Cyclic AMP/metabolism , Electrophysiological Phenomena/physiology , Female , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Male , Membrane Potentials/physiology , Models, Neurological , Patch-Clamp Techniques , Pyrimidines/pharmacology , Rats , Rats, Long-Evans , Recruitment, Neurophysiological , Vestibular Nuclei/cytology , Vestibular Nuclei/growth & development
10.
J Neurosci ; 39(3): 420-433, 2019 01 16.
Article En | MEDLINE | ID: mdl-30413645

Vestibular compensation is responsible for the spontaneous recovery of postural, locomotor, and oculomotor dysfunctions in patients with peripheral vestibular lesion or posterior circulation stroke. Mechanism investigation of vestibular compensation is of great importance in both facilitating recovery of vestibular function and understanding the postlesion functional plasticity in the adult CNS. Here, we report that postsynaptic histamine H1 receptor contributes greatly to facilitating vestibular compensation. The expression of H1 receptor is restrictedly increased in the ipsilesional rather than contralesional GABAergic projection neurons in the medial vestibular nucleus (MVN), one of the most important centers for vestibular compensation, in unilateral labyrinthectomized male rats. Furthermore, H1 receptor mediates an asymmetric excitation of the commissural GABAergic but not glutamatergic neurons in the ipsilesional MVN, which may help to rebalance bilateral vestibular systems and promote vestibular compensation. Selective blockage of H1 receptor in the MVN significantly retards the recovery of both static and dynamic vestibular symptoms following unilateral labyrinthectomy, and remarkably attenuates the facilitation of betahistine, whose effect has traditionally been attributed to its antagonistic action on the presynaptic H3 receptor, on vestibular compensation. These results reveal a previously unknown role for histamine H1 receptor in vestibular compensation and amelioration of vestibular motor deficits, as well as an involvement of H1 receptor in potential therapeutic effects of betahistine. The findings provide not only a new insight into the postlesion neuronal circuit plasticity and functional recovery in the CNS, but also a novel potential therapeutic target for vestibular disorders.SIGNIFICANCE STATEMENT Vestibular disorders manifest postural imbalance, nystagmus, and vertigo. Vestibular compensation is critical for facilitating recovery from vestibular disorders, and of great importance in understanding the postlesion functional plasticity in the adult CNS. Here, we show that postsynaptic H1 receptor in the medial vestibular nucleus (MVN) contributes greatly to the recovery of both static and dynamic symptoms following unilateral vestibular lesion. H1 receptor selectively mediates the asymmetric activation of commissural inhibitory system in the ipsilesional MVN and actively promotes vestibular compensation. The findings provide not only a new insight into the postlesion neuronal circuit plasticity and functional recovery of CNS, but also a novel potential therapeutic target for promoting vestibular compensation and ameliorating vestibular disorders.


Receptors, Histamine H1/drug effects , Vestibule, Labyrinth/physiopathology , Animals , Betahistine/therapeutic use , Ear, Inner , Functional Laterality/drug effects , Histamine H1 Antagonists/pharmacology , Histamine H3 Antagonists/therapeutic use , Locomotion/drug effects , Male , Nerve Net/drug effects , Nerve Net/physiopathology , Neurons/drug effects , Nystagmus, Physiologic/drug effects , Patch-Clamp Techniques , Postural Balance/drug effects , Rats , Rats, Sprague-Dawley , Vestibular Diseases/drug therapy , Vestibular Nuclei/cytology , Vestibular Nuclei/drug effects , Vestibular Nuclei/physiopathology , gamma-Aminobutyric Acid
11.
Elife ; 72018 12 19.
Article En | MEDLINE | ID: mdl-30566077

Vestibular function was established early in vertebrates and has remained, for the most part, unchanged. In contrast, each group of tetrapods underwent independent evolutionary processes to solve the problem of hearing on land, resulting in a remarkable mixture of conserved, divergent and convergent features that define extant auditory systems. The vestibuloacoustic nuclei of the hindbrain develop from a highly conserved ground plan and provide an ideal framework on which to address the participation of developmental processes to the evolution of neuronal circuits. We employed an electroporation strategy to unravel the contribution of two dorsoventral and four axial lineages to the development of the chick hindbrain vestibular and auditory nuclei. We compare the chick developmental map with recently established genetic fate-maps of the developing mouse hindbrain. Overall, we find considerable conservation of developmental origin for the vestibular nuclei. In contrast, a comparative analysis of the developmental origin of hindbrain auditory structures echoes the complex evolutionary history of the auditory system. In particular, we find that the developmental origin of the chick auditory interaural time difference circuit supports its emergence from an ancient vestibular network, unrelated to the analogous mammalian counterpart.


Brain Stem/embryology , Cochlear Nucleus/embryology , Vestibular Nuclei/embryology , Vestibule, Labyrinth/embryology , Animals , Auditory Pathways/cytology , Auditory Pathways/embryology , Auditory Pathways/metabolism , Brain Stem/cytology , Brain Stem/metabolism , Chick Embryo , Chickens , Cochlear Nucleus/cytology , Cochlear Nucleus/metabolism , Electroporation , Gene Expression Regulation, Developmental , Mice , Mice, Transgenic , Neurons/metabolism , Rhombencephalon/cytology , Rhombencephalon/embryology , Rhombencephalon/metabolism , Species Specificity , Vestibular Nuclei/cytology , Vestibular Nuclei/metabolism , Vestibule, Labyrinth/cytology , Vestibule, Labyrinth/metabolism
12.
Neuroreport ; 29(15): 1315-1322, 2018 10 17.
Article En | MEDLINE | ID: mdl-30169427

The vestibular center of the brainstem contains afferent and efferent vestibular neurons, which play an important role in information perception, processing, and sensory integration. Vestibular efferent neurons (VENs) can receive changes in vestibular afferent information and regulate peripheral vestibular function; however, it remains unclear how VENs change after vestibular afferent information increases or weakens. In this study, we used animal models with altered vestibular afferent information by electrically stimulating or destroying the vestibular medial nucleus (MVe). We confirmed the location of VENs in the brainstem by injecting five adult male Wistar rats in the vestibular region with a retrograde tracer. Following this, the MVe was stimulated electrically for 30 min in 20 naive rats. Rats were anesthetized and euthanized 1, 3, 6, and 12 h after stimulation. The MVe was electrolytically lesioned in another group (n=20); then, the rats were anesthetized and euthanized 1, 3, 5, and 7 days after lesioning. VENs were clearly identified dorsolateral to the genu of the facial nerve (g7) in coronal brainstem sections using choline acetyltransferase (ChAT) staining. The number of ChAT-positive VENs dorsolateral to g7 increased significantly on both sides compared with the control group 3 and 6 h after electrical stimulation. The number of ChAT-positive VENs dorsolateral to g7 was significantly greater on both sides compared with controls 3 and 5 days after electrolytic lesion. In summary, we found that the number of ChAT-positive VENs was significantly increased following a change in the excitability of MVe neurons. This suggests that VENs can respond to changes in afferent vestibular information and feedback, and regulate the peripheral vestibule. In addition, this shows that acetylcholine is an important neurotransmitter that plays an important role in the perception and fine regulation of the vestibular system.


Choline O-Acetyltransferase/metabolism , Neurons, Efferent/cytology , Neurons, Efferent/metabolism , Vestibular Nuclei/cytology , Vestibular Nuclei/metabolism , Animals , Electric Stimulation , Fluorescent Antibody Technique , Male , Membrane Potentials , Neuroanatomical Tract-Tracing Techniques , Neurons, Efferent/pathology , Rats, Wistar , Vestibular Nuclei/pathology
13.
Physiol Rep ; 6(17): e13750, 2018 09.
Article En | MEDLINE | ID: mdl-30178612

The spatio-temporal convergent (STC) response occurs in central vestibular cells when dynamic and static inputs are activated. The functional significance of STC behavior is not fully understood. Whether STC is a property of some specific central vestibular neurons, or whether it is a response that can be induced in any neuron at some frequencies is unknown. It is also unknown how the change in orientation of otolith polarization vector (orientation adaptation) affects STC behavior. A new complex model, that includes inputs with regular and irregular discharges from both canal and otolith afferents, was applied to experimental data to determine how many convergent inputs are sufficient to explain the STC behavior as a function of frequency and orientation adaptation. The canal-otolith and otolith-only neurons were recorded in the vestibular nuclei of three monkeys. About 42% (11/26 canal-otolith and 3/7 otolith-only) neurons showed typical STC responses at least at one frequency before orientation adaptation. After orientation adaptation in side-down head position for 2 h, some canal-otolith and otolith-only neurons altered their STC responses. Thus, STC is a property of weights of the regular and irregular vestibular afferent inputs to central vestibular neurons which appear and/or disappear based on stimulus frequency and orientation adaptation. This indicates that STC properties are more common for central vestibular neurons than previously assumed. While gravity-dependent adaptation is also critically dependent on stimulus frequency and orientation adaptation, we propose that STC behavior is also linked to the neural network responsible for localized contextual learning during gravity-dependent adaptation.


Neurons/physiology , Orientation, Spatial , Otolithic Membrane/physiology , Vestibular Nuclei/physiology , Animals , Macaca fascicularis , Models, Neurological , Vestibular Nuclei/cytology
14.
J Neurophysiol ; 119(1): 73-83, 2018 01 01.
Article En | MEDLINE | ID: mdl-28978765

Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs, and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a nonlinear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. NEW & NOTEWORTHY This is the first study to systematically explore the interaction of rotational and translational signals in the vestibular nuclei through independent manipulation. The results of this study demonstrate nonlinear integration leading to maximum response amplitude when the timing and direction of peak rotational and translational responses are coincident.


Neurons/physiology , Particle Accelerators , Perception , Rotation , Vestibular Nuclei/physiology , Animals , Macaca fascicularis , Male , Vestibular Nuclei/cytology
16.
Turk J Med Sci ; 47(6): 1903-1911, 2017 Dec 19.
Article En | MEDLINE | ID: mdl-29306256

Background/aim: Isolated cell cultures are widely used to study neuronal properties due to their advantages. Although embryonic animals are preferred for culturing, their morphological or electrophysiological properties may not reflect adult neurons, which may be important in neurodegenerative diseases. This paper aims to develop a method for preparing isolated cell cultures of medial vestibular nucleus (MVN) from adult mice and describe its morphological and electrophysiological properties.Materials and methods: Vestibular nucleus neurons were mechanically and enzymatically isolated and cultured using a defined medium with known growth factors. Cell survival was measured with propidium iodide, and electrophysiological properties were investigated with current-clamp recording.Results: Vestibular neurons grew neurites in cultures, gaining adult-like morphological properties, and stayed viable for 3 days in culture. Adding bovine calf serum, nerve growth factor, or insulin-like growth factor into the culture medium enhanced neuronal viability. Current-clamp recording of the cultured neurons revealed tonic and phasic-type neurons with similar input resistance, resting membrane potential, action potential amplitude, and duration. Conclusion: Vestibular neurons from adult mice can be cultured, and regenerate axons in a medium containing appropriate growth factors. Culturing adult vestibular neurons provides a new method to study age-related pathologies of the vestibular system.


Cell Culture Techniques/methods , Neurons/cytology , Neurons/physiology , Vestibular Nuclei/cytology , Animals , Cell Separation , Cells, Cultured , Male , Mice , Mice, Inbred BALB C , Neurites/physiology , Patch-Clamp Techniques
17.
Neuron ; 93(1): 211-220, 2017 Jan 04.
Article En | MEDLINE | ID: mdl-27989457

Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium-activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually evoked eye movements rapidly restore oculomotor function in wild-type mice but are profoundly impaired in BK channel-null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits.


Eye Movements/physiology , Large-Conductance Calcium-Activated Potassium Channels/physiology , Neuronal Plasticity/physiology , Reflex, Vestibulo-Ocular/physiology , Sensory Receptor Cells/physiology , Vestibular Nuclei/physiology , Animals , Eye Movement Measurements , Mice , Vestibular Nuclei/cytology , Vestibule, Labyrinth/injuries
18.
PLoS One ; 11(7): e0159300, 2016.
Article En | MEDLINE | ID: mdl-27427914

In vitro studies have previously found a class of vestibular nuclei neurons to exhibit a bidirectional afterhyperpolarization (AHP) in their membrane potential, due to calcium and calcium-activated potassium conductances. More recently in vivo studies of such vestibular neurons were found to exhibit a boosting nonlinearity in their input-output tuning curves. In this paper, a Hodgkin-Huxley (HH) type neuron model, originally developed to reproduce the in vitro AHP, is shown to produce a boosting nonlinearity similar to that seen in vivo for increased the calcium conductance. Indicative of a bifurcation, the HH model is reduced to a generalized integrate-and-fire (IF) model that preserves the bifurcation structure and boosting nonliearity. By then projecting the neuron model's phase space trajectories into 2D, the underlying geometric mechanism relating the AHP and boosting nonlinearity is revealed. Further simplifications and approximations are made to derive analytic expressions for the steady steady state firing rate as a function of bias current, µ, as well as the gain (i.e. its slope) and the position of its peak at µ = µ*. Finally, although the boosting nonlinearity has not yet been experimentally observed in vitro, testable predictions indicate how it might be found.


Action Potentials/physiology , Calcium Signaling/physiology , Models, Neurological , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Vestibular Nuclei/physiology , Adaptation, Physiological , Animals , Calcium/metabolism , Calcium Channels/metabolism , Computer Simulation , Humans , Ion Channel Gating , Neurons/cytology , Neurons/physiology , Nonlinear Dynamics , Vestibular Nuclei/cytology
19.
Exp Brain Res ; 234(10): 2747-60, 2016 10.
Article En | MEDLINE | ID: mdl-27411812

Imidazole-4-acetic acid-ribotide (IAARP) is a putative neurotransmitter/modulator and an endogenous regulator of sympathetic drive, notably systemic blood pressure, through binding to imidazoline receptors. IAARP is present in neurons and processes throughout the CNS, but is particularly prevalent in regions that are involved in blood pressure control. The goal of this study was to determine whether IAARP is present in neurons in the caudal vestibular nuclei that participate in the vestibulo-sympathetic reflex (VSR) pathway. This pathway is important in modulating blood pressure upon changes in head position with regard to gravity, as occurs when humans rise from a supine position and when quadrupeds climb or rear. Sinusoidal galvanic vestibular stimulation was used to activate the VSR and cfos gene expression in VSR pathway neurons of rats. These subjects had previously received a unilateral FluoroGold tracer injection in the rostral or caudal ventrolateral medullary region. The tracer was transported retrogradely and filled vestibular neuronal somata with direct projections to the injected region. Brainstem sections through the caudal vestibular nuclei were immunostained to visualize FluoroGold, cFos protein, IAARP and glutamate immunofluorescence. The results demonstrate that IAARP is present in vestibular neurons of the VSR pathway, where it often co-localizes with intense glutamate immunofluorescence. The co-localization of IAARP and intense glutamate immunofluorescence in VSR neurons may represent an efficient chemoanatomical configuration, allowing the vestibular system to rapidly up- and down-modulate the activity of presympathetic neurons in the ventrolateral medulla, thereby altering blood pressure.


Imidazoles/metabolism , Medulla Oblongata/cytology , Neurons/metabolism , Ribosemonophosphates/metabolism , Sympathetic Nervous System/metabolism , Vestibular Nuclei/cytology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Functional Laterality , Glutamic Acid/metabolism , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Long-Evans , Reflex/physiology , Stilbamidines/metabolism
20.
J Neurosci Res ; 94(8): 736-48, 2016 08.
Article En | MEDLINE | ID: mdl-27121461

The central noradrenergic system, originating mainly from the locus coeruleus in the brainstem, plays an important role in many physiological functions, including arousal and attention, learning and memory, anxiety, and nociception. However, little is known about the roles of norepinephrine (NE) in somatic motor control. Therefore, using extracellular recordings on rat brainstem slices and quantitative real-time RT-PCR, we investigate the effect and mechanisms of NE on neuronal activity in the inferior vestibular nucleus (IVN), the largest nucleus in the vestibular nuclear complex, which holds an important position in integration of information signals controlling body posture. Here, we report that NE elicits an excitatory response on IVN neurons in a concentration-dependent manner. Activation of α1 - and ß2 -adrenergic receptors (ARs) induces an increase in firing rate of IVN neurons, whereas activation of α2 -ARs evokes a decrease in firing rate of IVN neurons. Therefore, the excitation induced by NE on IVN neurons is a summation of the excitatory components mediated by coactivation of α1 - and ß2 -ARs and the inhibitory component induced by α2 -ARs. Accordingly, α1 -, α2 -, and ß2 -AR mRNAs are expressed in the IVN. Although ß1 -AR mRNAs are also detected, they are not involved in the direct electrophysiological effect of NE on IVN neurons. All these results demonstrate that NE directly regulates the activity of IVN neurons via α1 -, α2 -, and ß2 -ARs and suggest that the central noradrenergic system may actively participate in IVN-mediated vestibular reflexes and postural control. © 2016 Wiley Periodicals, Inc.


Neurons/drug effects , Norepinephrine/pharmacology , Receptors, Adrenergic/biosynthesis , Vestibular Nuclei/cytology , Vestibular Nuclei/drug effects , Animals , Dose-Response Relationship, Drug , Electrophysiological Phenomena/genetics , Female , In Vitro Techniques , Male , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic/drug effects , Receptors, Adrenergic/genetics
...